【Prompt优化】提示工程指南

富金
2024-09-09 10:11

介绍

提示工程(Prompt Engineering)是一门较新的学科,关注提示词开发和优化,帮助用户将大语言模型(Large Language Model, LLM)用于各场景和研究领域。 掌握了提示工程相关技能将有助于用户更好地了解大型语言模型的能力和局限性。

提示工程不仅仅是关于设计和研发提示词。它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都起着重要作用。用户可以通过提示工程来提高大语言模型的安全性,也可以赋能大语言模型,比如借助专业领域知识和外部工具来增强大语言模型能力。

提示工程是一个较新的学科,应用于开发和优化提示词(Prompt),帮助用户有效地将语言模型用于各种应用场景和研究领域。掌握了提示工程相关技能将有助于用户更好地了解大型语言模型的能力和局限性。研究人员可利用提示工程来提高大语言模型处理复杂任务场景的能力,如问答和算术推理能力。开发人员可通过提示工程设计和研发出强大的技术,实现和大语言模型或其他生态工具的高效接轨。

研究人员可利用提示工程来提升大语言模型处理复杂任务场景的能力,如问答和算术推理能力。开发人员可通过提示工程设计、研发强大的工程技术,实现和大语言模型或其他生态工具的高效接轨。

提示词要素

如果您接触过大量提示工程相关的示例和应用,您会注意到提示词是由一些要素组成的。

提示词可以包含以下任意要素:

指令:想要模型执行的特定任务或指令。

上下文:包含外部信息或额外的上下文信息,引导语言模型更好地响应。

输入数据:用户输入的内容或问题。

输出指示:指定输出的类型或格式。

设计提示的通用技巧

指令

你可以使用命令来指示模型执行各种简单任务,例如“写入”、“分类”、“总结”、“翻译”、“排序”等,从而为各种简单任务设计有效的提示。

请记住,你还需要进行大量实验以找出最有效的方法。以不同的关键词(keywords),上下文(contexts)和数据(data)试验不同的指令(instruction),看看什么样是最适合你特定用例和任务的。通常,上下文越具体和跟任务越相关则效果越好。在接下来的指南中,我们将讨论样例和添加更多上下文的重要性。

具体性

要非常具体地说明你希望模型执行的指令和任务。提示越具描述性和详细,结果越好。特别是当你对生成的结果或风格有要求时,这一点尤为重要。不存在什么特定的词元(tokens)或关键词(tokens)能确定带来更好的结果。更重要的是要有一个具有良好格式和描述性的提示词。事实上,在提示中提供示例对于获得特定格式的期望输出非常有效。

在设计提示时,还应注意提示的长度,因为提示的长度是有限制的。想一想你需要多么的具体和详细。包含太多不必要的细节不一定是好的方法。这些细节应该是相关的,并有助于完成手头的任务。这是你需要进行大量实验的事情。我们鼓励大量实验和迭代,以优化适用于你应用的提示。

避免不明确

给定上述关于详细描述和改进格式的建议,很容易陷入陷阱:想要在提示上过于聪明,从而可能创造出不明确的描述。通常来说,具体和直接会更好。这里的类比非常类似于有效沟通——越直接,信息传达得越有效。


做什么还是不做什么?

设计提示时的另一个常见技巧是避免说不要做什么,而应该说要做什么。这样(说要做什么)更加的具体,并且聚焦于(有利于模型生成良好回复的)细节上。

 

参考:https://www.promptingguide.ai/zh

全部评论